
The University of New South Wales

Final Exam

2009/11/03

COMP3151/COMP9151

Foundations of Concurrency

Time allowed: 2 hours (9:45–12:00)
Total number of questions: 5
Total number of marks: 45

Textbooks, lecture notes, etc. are not permitted, except for 2 double-sided A4
sheets of hand-written notes.

Calculators may not be used. (Not that they would be of any help.)

Not all questions are worth equal marks.

Answer all questions.

Answers must be written in ink.

You can answer the questions in any order.

You may take this question paper out of the exam.

Write your answers into the answer booklet provided. Use a pencil or the back
of the booklet for rough work. Your rough work will not be marked.



Shared-Variable Concurrency (15 Marks)

Question 1 (8 marks)

Let k > 1. Let A be an algorithm which was designed to solve the mutual exclusion problem
for 2 processes. The algorithm B for n = 2k processes is built up inductively by splitting the
n processes into two groups of n

2
processes each. In each group the processes compete to enter

the critical section using recursively the solution for n
2

processes. The winners of each of the
two groups use A to determine which one is allowed to enter the top-level critical section.

0 1

0 1 2 3

0

2 3

4 5 6 7

1

0

processes

level 0

level 1

level 2

Figure 1: The tournament tree for 8 processes. At each level the nodes are numbered from left
to right starting from 0. Thus, each node in the tree is uniquely determined by its
level and node number.

Another way to view this idea is to consider the competition between the processes as a knock-
out tournament, as illustrated in Figure 1. Processes start as leaves in a balanced binary tree.
To enter its critical section, each process attempts to progress to the root of the tree, where
at each level of the tree it participates in an instance of A with at most one process in its
neighbour’s sub-tree. The winner at the top level is allowed to enter its critical section. Upon
exiting its critical section, the winner traverses the reverse path (from the root to the leaf)
executing its post protocol of A at each level. Each instance of A will use a separate set of
shared and local variables to avoid interference.

Prove or disprove:

(a) If A satisfies mutual exclusion then so does B.

(b) If A satisfies eventual entry then so does B.

2



Question 2 (7 marks)

Recall the fast mutual exclusion algorithm:

Algorithm: Fast algorithm for two processes
integer gate1 ← 0, gate2 ← 0
boolean wantp ← false, wantq ← false

p q
p1: gate1 ← p q1: gate1 ← q

wantp ← true wantq ← true
p2: if gate2 6= 0 q2: if gate2 6= 0

wantp ← false wantq ← false
goto p1 goto q1

p3: gate2 ← p q3: gate2 ← q
p4: if gate1 6= p q4: if gate1 6= q

wantp ← false wantq ← false
await wantq = false await wantp = false

p5: if gate2 6= p goto p1 q5: if gate2 6= q goto q1
else wantp ← true else wantq ← true

critical section critical section
p6: gate2 ← 0 q6: gate2 ← 0
p7: wantp ← false q7: wantq ← false

Does it matter if we change the order of the last two statements in p (lines p6 and p7)?

3



Message-Passing Concurrency (30 Marks)

Answers to questions that require programming can be formulated using Ben-Ari’s pseudo-code
notation, Promela, or (if you must) C with MPI.

Question 3 (8 marks)

Develop an implementation of a time-server process. The server provides two operations that
can be called by client processes: one to get the time of the day and one to delay for a
specified interval. In addition, the time server receives periodic “tick” messages from a clock
interrupt handler. Also show the client interface to the time server for the time of day and
delay operations.

Question 4 (7 marks)

Develop a solution for the dining philosophers problem under the restriction that a channel
must be connected to exactly one sender and one receiver.

Question 5 (15 marks)

Recall the dining cryptographers’ problem. As before we assume that each cryptographer Ci

has a secret bit pi ∈ {0, 1} that is 1 iff Ci paid. At most one of the cryptographers paid, but
maybe none of them paid but the NSA did.

Consider the following algorithm for a party of n of them. Cryptographer C1 secretly flips a
coin to generate a result c ∈ {0, 1}. She then XORs c with p1 and passes the result c⊕ p1 on to
her neighbour C2. Every cryptographer Ci where i > 1 waits for input from Ci−1, XORs that
input with pi, and passes it on to his neighbour C(i mod n)+1. When C1 receives the bit b from
Cn, she announces “the NSA paid” if b = c and “one of us paid” otherwise.

3 marks Model the algorithm with transition diagrams.

2 marks Formulate a pre- and a postcondition to capture the crucial aspect of the algorithm,
namely that the final announcement by C1 is truthful.

5 marks Prove validity of the resulting Hoare-triple.

5 marks Consider the case n = 3. Prove or disprove that C1 does not learn which one of C2

and C3 paid if one of them did.

4


